• Users Online: 459
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2017  |  Volume : 33  |  Issue : 2  |  Page : 508-517

Auditory brainstem evoked responses and vestibular evoked myogenic potentials: potential biomarkers in Parkinson's disease

1 Audiology Unit, ORL Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
2 Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt

Correspondence Address:
Dalia M Hassan
Audiology Unit, ORL Department Faculty of Medicine, Ain Shams University, Abbassia Street, Cairo, 1156
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1012-5574.206023

Rights and Permissions

Objective The aim of this study was to investigate brainstem functions in Parkinson's disease (PD) through studying auditory brainstem evoked responses (ABRs), and ocular and cervical vestibular evoked myogenic potentials (oVEMP and cVEMP) and to explore their relation with motor symptoms, if any. Study design Fifteen individuals diagnosed as having idiopathic PD and 15 age-matched controls were included. The PD patients were evaluated using the Unified Parkinson's Disease Rating Scale, the Hoehn and Yahr Scale, and the Schwab and England Scale. The subscores of major symptom were calculated, such as tremor, rigidity, bradykinesia, and axial signs. During medication ‘on’ states, PD patients and controls underwent pure-tone audiometry, speech audiometry, tympanometry, ABR, oVEMP, and cVEMP. The test findings in PD patients were grouped into ipsilateral and contralateral results in relation to the clinically more affected motor side and were compared with the age-matched controls. Results PD patients showed abnormal ABR wave morphology, prolonged absolute latencies of ABR wave V, and I–V interpeak latencies. Absent responses were the evident abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. The main motor features of PD (rigidity and bradykinesia) were correlated to the ABR and cVEMP responses contralateral to the clinically more affected side. Conclusion Dysfunction at different levels of the brainstem was confirmed in patients with PD. The impairment of ABRs and VEMP responses is related to characteristic clinical asymmetry of PD and its cardinal motor features. ABRs and VEMPs could be used as potential electrophysiological biomarkers for PD.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded113    
    Comments [Add]    

Recommend this journal