• Users Online: 196
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 33  |  Issue : 4  |  Page : 656-662

Complex auditory brainstem response in normal-hearing adults using binaural versus monaural speech stimuli


1 Professor of Audio-Vestibular Medicine, Audiology Unit, Department of Otolaryngology, Kasr-Al-Ainy Faculty of Medicine, Cairo University, Egypt
2 Lecturer of Audio-Vestibular Medicine, Audiology Unit, Department of Otolaryngology, Faculty of Medicine, Bani-Suef University, Egypt
3 Lecturer of Audio-Vestibular Medicine, Audiology Unit, Department of Otolaryngology, Kasr-Al-Ainy Faculty of Medicine, Cairo University, Egypt

Correspondence Address:
Rabab Ahmed Koura
1st Settlement, New Cairo
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ejo.ejo_74_16

Rights and Permissions

Background Binaural hearing refers to the ability of the auditory system to integrate sounds reaching both ears. The complex auditory brainstem response (cABR) to the /da/ synthetic syllable gives information about time-locked response that is either transient or sustained depending on the periodic or nonperiodic characteristics of the stimulus. Objective This is a preliminary research that was performed to study the binaural interaction component of cABR in normal-hearing adults. Patients and methods This study included 20 normal-hearing adults, whose age ranged from 15 to 60 years, with a mean age of 29.30±12.52 years. CABR was conducted for all patients. The stimulus used was the syllable [da] (40 ms), presented first monaurally (left and right) and then binaurally through TDH headphones, in alternating polarity at 80 dBnHL. binaural interaction component (BIC) was then computed by subtracting the binaural waveform from the sum of the two monaural responses. Results The mean right amplitudes were smaller than binaural amplitudes for waves V, A, C, D, E, and F. However, this difference was statistically significant at D, E, and F waves only. The mean left amplitudes were smaller than binaural amplitudes for waves V, A, C, D, and E only. In addition, this difference was statistically significant. The mean binaural amplitudes were smaller than the summed right+left amplitudes for waves V, A, C, D, E, F, and O. There was no statistically significant difference among the mean latencies of responses recorded from right, left, or binaural for all cABR waves. Conclusion BICs reflecting binaural process can be obtained for ABR using speech stimuli comparing the binaural and summed monaural recorded responses. We recommend assessing the BIC on a large scale to obtain normative data, for comparison with patients with known auditory processing capabilities (shown by behavioural tests) to see how well the data can be used as an index of binaural process.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed76    
    Printed0    
    Emailed0    
    PDF Downloaded13    
    Comments [Add]    

Recommend this journal